A Framework of Cycle-based Clustering on the Crossed Cube Architecture

Tzu-Liang Kung, Chun-Nan Hung, Cheng-Kuan Lin, Hsiang-Chun Chen, Chia-Hui Lin, Lih-Hsing Hsu

E-mail: spring@mail.dyu.edu.tw

ABSTRACT

For large-scale networking environments, grouping network nodes into clusters is a key technique to achieve the scalability objective. This paper addresses cycle-based node clustering in the crossed cube architecture. Let \(r \) be a positive integer. For any \(r \) distinct vertices \(v_1, \ldots, v_r \) of a network \(G = (V,E) \), \(G \) is said to be spanning \((v_1, \ldots, v_r)\)-cyclable if there exists a set of \(r \) vertex-disjoint cycles \(C_1, \ldots, C_r \) in \(G \) such that \(\min\{|C_1|, \ldots, |C_r|\} \geq 4 \), \(\sum_{i=1}^r |C_i| = |V| \), and \(v_i \in V(C_i) \) for \(1 \leq i \leq r \), where \(|C_i| \) denotes the length of cycle \(C_i \), \(|V| \) is the total number of vertices in \(G \), and \(V(C_i) \) denotes the set of vertices traversed by \(C_i \). Then, \(C_1, \ldots, C_r \) form a collect

Keywords: Disjoint cycles, clustering, interconnection network, crossed cube

REFERENCES